Wednesday, December 24, 2014

Basic Overview Of Advanced Color Theory

By Stacey Burt


When viewed under white light, it appears red. But this does not mean that emits red light, which would be the case an additive synthesis. Doing so, we would be able to see in dark. Instead, absorbs some wavelengths that comprise the white light, reflecting only those human seen as red. Humans see red apple due to the particular operation of your eye and brain interpretation of information coming at you in eye (advanced color theory).

The reflected waves are captured by the eye and interpreted in brain as different colours depending on the lengths of corresponding waves. The human eye can only perceive wavelengths when light is abundant. In low light is in black and white. In so-called additive synthesis (commonly called "colour overlay light") white colour results from the superposition of all colours, while black is the absence of colour.

When this light encounters a pigment, some waves are absorbed by chemical bonds and substituents of pigment, while others are reflected. This new spectrum of reflected light creates the appearance of colour. For example, a dark blue pigment reflects blue light, and absorbs other colours.

In animal kingdom mammals generally do not distinguish colours well, birds however, yes; but usually have a preference for reddish colours. Insects, by contrast, tend to have a better perception of blues and even ultraviolet. Generally nocturnal animals see in black and white. Some diseases such as colour blindness or colour blindness from seeing colours well.

It is called additive to obtain a light colour determined by the sum of other colours synthesis. Thomas Young based on the discovery of Newton that the sum of colours of visible spectrum formed white light conducted an experiment with flashlights with the six colours of visible spectrum, projecting these foci and superimposing reached a new discovery to form the six colours of spectrum only took three colours and also adding the three light formed. Reproduction process normally used additive red, green and blue light to produce other colours. Combining one ofse primary colours in equal proportions with other colours produces secondary additives, lighter than previous cyan, magenta and yellow.

Many birds and marsupials are tetracromatas, and it has been suggested that some women are born, June 5 with an extra receiver for yellow. Furthermore, most mammals have only two types of colour receptor and therefore are dichromats; for them, there are only two primary colours. Everything that is not additive colour is subtractive colour. In other words, everything that is not direct light is light reflected from an object, the first is based on additive synthesis of colour, the second subtractive synthesis of colour.

A normal human eye has only three types of receptors, called cones. They respond to specific wavelengths of red, green and blue light.

This is because brain activity retinal since photoreceptors, although simple, are neuronal cells. Information of rods and cones is processed by other cells located immediately below and connected behind them (horizontal, bipolar, amacrine and ganglion). The processing inse cells is the source of two-dimensional or antagonistic pairs chromatic channels: Red-Green - Blue - Yellow and an achromatic channel dimension or chiaroscuro.




About the Author:



No comments:

Post a Comment